
Verifying non-terminating programs with IO in F*

Cezar-Constantin Andrici1, Théo Winterhalter1,
Cătălin Hriţcu1, and Exequiel Rivas2

1 MPI-SP, Bochum, Germany 2 Tallinn University of Technology, Estonia

Abstract

We present a work-in-progress definition of an F* effect for writing, specifying, and verify-
ing functional correctness for higher-order programs with input-output. We then extend this
effect to support potentially non-terminating programs. Crucially we do not stop at partial
correctness where the specification only concludes about terminating runs, but instead rely
on infinite traces to also reason about infinite runs. We aim to use this to verify meaningful
properties of infinite loops, such as the main loop of a web server. As F* does not natively
support coinduction, we encode specifications about infinite traces using an impredicative
encoding of an infinite loop at the level of specifications.

Statically verifying functional correctness of programs with input-output (IO) is difficult and
typically involves talking about traces, i.e. the stream of IO events that occur during a specific
run of the program. Ideally, one would like to be able to write the program, specify it, and verify
it in the same language. Furthermore, one would hope to be able to leverage a certain level of
automation to alleviate the proof burden. In this spectrum, the proof-oriented programming lan-
guage F* [SHK+16] is a good candidate in that it makes verification of programs practical thanks
to a collection of features that range from SMT-based automation to user-defined effects with
specifications. We take advantage of this to define1 a new effect in F* that supports verification
of trace properties of IO programs. Beyond the definition of such an effect, we strive to make it
practical by tuning it to benefit as much as possible from F*’s automation capabilities. In the
short term, the goal is to verify a simple web server.

Web servers are an instance of programs with IO for which running indefinitely is the expected
behaviour. When verifying such programs we have to give a meaningful specification to an infinite
loop. In this setting, partial correctness specifications, which only conclude about terminating
runs, are not enough. Extending our effect to take into account infinite runs requires us to
considerably complicate the specifications so that they can conclude in both terminating and non-
terminating cases. Thankfully, in practice, such as in the case of a web server, most parts of
the program are in fact terminating and typically only the main loop is non-terminating. We
take advantage of this and of F*’s sub-effecting mechanism and introduce two effects: one for
terminating IO computations; and one which also allows non-termination. Terminating programs
can then be verified in the simpler terminating setting where automation is more efficient, and
they can later be lifted to the more general effect to be used in the main loop.

Terminating code. Following Dijkstra Monads for All [MAA+19], we first define an F* effect
for terminating IO computations by defining a computational monad, a specification monad, and
a monad morphism between the two. For our computational monad we use a free monad variant:2

type free (sg : signature) (a : Type) : Type =

| Ret : a -> free sg a

| Call : ac:sg.act -> x:sg.arg ac -> k:(sg.res x -> free sg a) -> free sg a

The computational monad is parametrised by a signature sg which contains a type of actions
ac : sg.act that take arguments x : sg.arg ac and return results of type sg.res x which
may depend on the argument x. These actions correspond to the IO operations such as opening
files, reading from, writing to and closing them. For instance, a program reading a string from a
file descriptor fd and returning its length would be encoded as:

1Available at https://github.com/andricicezar/fstar-io/tree/hope-submission.
2A constructor of our free monad is omitted here. We explain it in Partial Dijkstra Monads for All [WAH+22].

https://github.com/andricicezar/fstar-io/tree/hope-submission


Verifying non-terminating programs with IO in F* Andrici, Winterhalter, Hriţcu, and Rivas

Call Read fd (fun s -> Ret (length s))

We use the Call constructor to invoke the Read action which takes file descriptor fd as argument
and continues with resulting string s whose length we return using Ret.

Thankfully, in F* we can rely on the user-defined effect mechanism [RMF+21] and—instead
of writing the above—we can write the direct-style code below:

let file_length (fd : file_descr) : IO nat (requires is_open fd) (ensures p) =

length (read fd)

This example also showcases the proof-oriented aspect of F*. Indeed, not only are we specifying
that the program returns a natural number while using the IO effect, but we also state that it
should only be called on an open file descriptor. In this case, we present the effect specification
using Hoare-style pre- and post-conditions. The pre-condition is a predicate that must be verified
by the history of the program, i.e. the list of events that happened before it was run. is_open fd

will for instance check that an Open event occurred for fd and that it was not followed by a Close

event. The post-condition is a predicate on the same history, but also on the list of newly emitted
events and on the final value. For instance, we could take p to state that there exists a string s

whose length is the result r and such that the only emitted states that a read was performed on
file fd resulting in s:

let p = fun hist tr r -> exists s. tr == [ ERead fd s ] /\ r == length s

In practice, we found out that it is much easier to write predicates if the history of events is
kept backwards (from recent to old). This also proved to work well with the SMT and we were
able to use this effect to verify a simple terminating web server.

Non-terminating code. In order to support non-termination in our effect, we extend our free
monad with an extra constructor corresponding to unbounded iteration3, from which we can define
the following operation in our free monad:

iter (f : b -> free sg (either b a)) (i : b) : free sg a

The idea is that iter f i first applies the loop body f to i and when this returns Inl j, the
loop continues with iter f j; when it returns Inr x the whole loop returns x : a.

To specify iter, we take inspiration from related work entitled Dijkstra Monads for Ever
(DM4Ever) [SZ21], which uses interaction trees [XZH+20], a coinductive data-type in Coq to
represent their potentially infinite programs and their runs. They define iter in Coq using the
following co-fixed-point:

iter f i = match f i with Inl j -> tau ; iter f j | Inr x -> Ret x

They need to add a silent step—called tau—in order to ensure the co-fixed-point is productive.
A program which loops silently is thus an infinite sequence of tau.

We reproduce essentially the same specifications as them, with two important differences: (i)
instead of just proving various program logic rules such as loop invariants, we provide a specifica-
tion combinator w_iter to compute the specification w_iter w i of iter f i from a specification
w of its body f; (ii) we do not attempt to have an unfolding equation for iter and instead only
have it for w_iter.

F* does not support coinduction natively, but we can nevertheless easily represent streams of
events as sequences indexed by natural numbers: stream a = nat -> a. More interestingly, we
define w_iter f i using an impredicative encoding of a co-fixed-point which reflects the equation
above at the level of specifications:

w_iter w i = match w i with Inl j -> w_tau ; w_iter w j | Inr x -> w_ret x

3This works as a purely syntactic counterpart for a dagger operator (−†) in the spirit of monads with iterative
structure [GMR16, GSRP17].

2



Verifying non-terminating programs with IO in F* Andrici, Winterhalter, Hriţcu, and Rivas

Ongoing and future work. Several challenges remain to make this work practical. We list
here what we are currently doing as well as what we plan to do regarding this work.

• As a case study, we are verifying a simple stateless web server that serves files over HTTP. We
managed to verify safety properties about the terminating computations relatively easily by
taking advantage of the SMT solver. We showed safety properties about the loop body in the
terminating effect, and we plan to make use of sub-effecting to lift it to the non-terminating
effect.

• We are working to make non-termination verification practical in F* by overcoming automa-
tion challenges. Mainly, our specifications have to distinguish between finite and infinite runs
of a program, which can lead to exponential blow-up in the generated verification conditions.

• So far, we have only tested our work verifying properties of finite prefixes of infinite traces.
It remains to see how we fare on more global properties of infinite runs such as liveness
properties.

• We would like to extend our monad to support more effects such as state and exceptions in
order to verify a realistic web server.

• This work is an important component of another direction we are working on. Verifying a
web server in F* is difficult, but then it is extracted to another language such as OCaml and
linked with OCaml code. Thus, all the security guarantees are lost. Our goal is to create a
mechanism through which a programmer is able to integrate a statically verified component
with an unverified piece of code, and still be able to prove safety properties about the whole
program — thus obtaining secure F*-ML interoperability [And20, And21].

Related work. We verify monadic computations represented by a free monad parameterized
by the signature of the actions using Hoare-style specifications.

In the same style, by using Hoare-style specification, the FreeSpec framework [LR20] for Coq,
Ynot library [MMW11] for Coq and Penninckx et al [PJP15, PTJ19] present different ways to
verify partial correctness specification for IO computations — while we verify full correctness
specification. The FreeSpec framework uses almost the same computational monad as us, but
allows choosing the internal state for verification, e.g. the trace in our case. The Ynot library
uses a similar setting to us for static verification in that they use properties that are defined over
traces of events. Penninckx et al present an approach to verifying IO programs using Petri nets
and separation logic, implemented in VeriFast [JSP+11].

Guéneau et al [GMKN17] and Férée et al [FPK+18] develop a program logic based on charac-
teristic formulae for CakeML source programs with IO and use this framework to verify Unix-style
command-line utilities such as cat, sort, grep, diff, and patch, when called on finite input files,
which guarantees termination. Åman Pohjola et al [ÅRM19] later build on top of this a new
program logic for verifying non-terminating CakeML computations with IO by using clocked se-
mantics: evaluation of a program is indexed by a natural number bounding the number of allowed
recursive calls. In more recent work, Myreen [Myr20] distils the main ideas into a Hoare logic
for diverging IO programs, which he proves sound and complete. The goals of these works seem
similar to what we achieve in F*, and Åman Pohjola et al ’s use of a clock seems related to our use
of silent steps on the trace. A more precise comparison to these techniques would be interesting.

Interaction trees [XZH+20, SZ21] were shown to be a great fit to verify non-terminating im-
pure computations in Coq. Interaction trees are not obvious to implement without coinductive
types, yet our work enables verification of non-terminating IO computations without the need of
coinductive types. Interaction trees were used to verify an HTTP Key-Value Server that is part
of CertiKOS [ZHK+21]. The web server is written in C and the trace properties were verified
in Coq. Coq requires to apply tactics manually to prove verification goals. Our work targets to
simplify this kind of use-case by taking advantage of the SMT automation.

3



Verifying non-terminating programs with IO in F* Andrici, Winterhalter, Hriţcu, and Rivas

References

[And20] Cezar-Constantin Andrici. Hybrid enforcement of IO trace properties. ICFP Student
Research Competition, 2020. URL: https://src.acm.org/binaries/content/assets/src/

2021/cezar-constantin-andrici.pdf.

[And21] Cezar-Constantin Andrici. Secure F*-ML interoperability for IO programs. Master’s thesis,
2021. Advised by Ştefan Ciobâcă and Cătălin Hriţcu. URL: https://cezarandrici.com/

wp-content/uploads/2022/03/MsC_thesis_AndriciCezarConstantin.pdf.

[ÅRM19] Johannes Åman Pohjola, Henrik Rostedt, and Magnus O. Myreen. Characteristic formulae
for liveness properties of non-terminating cakeml programs. In John Harrison, John O’Leary,
and Andrew Tolmach, editors, 10th International Conference on Interactive Theorem Proving,
ITP 2019, September 9-12, 2019, Portland, OR, USA, volume 141 of LIPIcs, pages 32:1–32:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ITP.2019.32.

[FPK+18] Hugo Férée, Johannes Åman Pohjola, Ramana Kumar, Scott Owens, Magnus O. Myreen, and
Son Ho. Program verification in the presence of I/O - semantics, verified library routines,
and verified applications. In Ruzica Piskac and Philipp Rümmer, editors, Verified Software.
Theories, Tools, and Experiments - 10th International Conference, VSTTE 2018, Oxford,
UK, July 18-19, 2018, Revised Selected Papers, volume 11294 of Lecture Notes in Computer
Science, pages 88–111. Springer, 2018. doi:10.1007/978-3-030-03592-1\_6.

[GMKN17] Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, and Michael Norrish. Verified charac-
teristic formulae for cakeml. In Hongseok Yang, editor, Programming Languages and Systems
- 26th European Symposium on Programming, ESOP 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-
29, 2017, Proceedings, volume 10201 of Lecture Notes in Computer Science, pages 584–610.
Springer, 2017. doi:10.1007/978-3-662-54434-1\_22.

[GMR16] Sergey Goncharov, Stefan Milius, and Christoph Rauch. Complete Elgot monads and
coalgebraic resumptions. Electronic Notes in Theoretical Computer Science, 325:147–168,
2016. The Thirty-second Conference on the Mathematical Foundations of Programming
Semantics (MFPS XXXII). URL: https://www.sciencedirect.com/science/article/pii/
S1571066116300858, doi:https://doi.org/10.1016/j.entcs.2016.09.036.

[GSRP17] Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg. Unifying guarded
and unguarded iteration. In Proceedings of the 20th International Conference on Founda-
tions of Software Science and Computation Structures - Volume 10203, page 517–533, Berlin,
Heidelberg, 2017. Springer-Verlag. doi:10.1007/978-3-662-54458-7_30.

[JSP+11] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. Verifast: A powerful, sound, predictable, fast verifier for C and java. In Mihaela Ghe-
orghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA For-
mal Methods - Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20,
2011. Proceedings, volume 6617 of Lecture Notes in Computer Science, pages 41–55. Springer,
2011. doi:10.1007/978-3-642-20398-5\_4.

[LR20] Thomas Letan and Yann Régis-Gianas. Freespec: specifying, verifying, and executing impure
computations in Coq. In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New
Orleans, LA, USA, January 20-21, 2020, pages 32–46. ACM, 2020. doi:10.1145/3372885.

3373812.

[MAA+19] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Mart́ınez, Cătălin Hriţcu, Exequiel Rivas,
and Éric Tanter. Dijkstra monads for all. PACMPL, 3(ICFP):104:1–104:29, 2019. URL:
https://arxiv.org/abs/1903.01237, doi:10.1145/3341708.

[MMW11] Gregory Malecha, Greg Morrisett, and Ryan Wisnesky. Trace-based verification of imperative
programs with I/O. J. Symb. Comput., 46(2):95–118, 2011. doi:10.1016/j.jsc.2010.08.004.

[Myr20] Magnus O. Myreen. A Hoare logic for diverging programs. https://github.com/

HOL-Theorem-Prover/HOL/tree/develop/examples/Hoare-for-divergence, 2020.

[PJP15] Willem Penninckx, Bart Jacobs, and Frank Piessens. Sound, modular and compositional
verification of the input/output behavior of programs. In Jan Vitek, editor, Programming
Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,

4

https://src.acm.org/binaries/content/assets/src/2021/cezar-constantin-andrici.pdf
https://src.acm.org/binaries/content/assets/src/2021/cezar-constantin-andrici.pdf
https://cezarandrici.com/wp-content/uploads/2022/03/MsC_thesis_AndriciCezarConstantin.pdf
https://cezarandrici.com/wp-content/uploads/2022/03/MsC_thesis_AndriciCezarConstantin.pdf
https://doi.org/10.4230/LIPIcs.ITP.2019.32
https://doi.org/10.1007/978-3-030-03592-1_6
https://doi.org/10.1007/978-3-662-54434-1_22
https://www.sciencedirect.com/science/article/pii/S1571066116300858
https://www.sciencedirect.com/science/article/pii/S1571066116300858
https://doi.org/https://doi.org/10.1016/j.entcs.2016.09.036
https://doi.org/10.1007/978-3-662-54458-7_30
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/3372885.3373812
https://doi.org/10.1145/3372885.3373812
https://arxiv.org/abs/1903.01237
https://doi.org/10.1145/3341708
https://doi.org/10.1016/j.jsc.2010.08.004
https://github.com/HOL-Theorem-Prover/HOL/tree/develop/examples/Hoare-for-divergence
https://github.com/HOL-Theorem-Prover/HOL/tree/develop/examples/Hoare-for-divergence


Verifying non-terminating programs with IO in F* Andrici, Winterhalter, Hriţcu, and Rivas

London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture Notes in Computer
Science, pages 158–182. Springer, 2015. doi:10.1007/978-3-662-46669-8\_7.

[PTJ19] Willem Penninckx, Amin Timany, and Bart Jacobs. Abstract I/O specification. CoRR,
abs/1901.10541, 2019. URL: http://arxiv.org/abs/1901.10541, arXiv:1901.10541.

[RMF+21] Aseem Rastogi, Guido Mart́ınez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil
Swamy. Programming and proving with indexed effects, July 2021. In submission. URL:
https://www.fstar-lang.org/papers/indexedeffects/.

[SHK+16] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Si-
mon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
et al. Dependent types and multi-monadic effects in F*. In Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
256–270, 2016.

[SZ21] Lucas Silver and Steve Zdancewic. Dijkstra monads forever: termination-sensitive specifica-
tions for interaction trees. Proceedings of the ACM on Programming Languages, 5(POPL):1–28,
2021.

[WAH+22] Théo Winterhalter, Cezar-Constantin Andrici, Cătălin Hriţcu, Kenji Maillard, Guido
Mart́ınez, and Exequiel Rivas. Partial dijkstra monads for all. TYPES, 2022.

[XZH+20] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce,
and Steve Zdancewic. Interaction trees: representing recursive and impure programs in Coq.
Proc. ACM Program. Lang., 4(POPL):51:1–51:32, 2020. doi:10.1145/3371119.

[ZHK+21] Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer,
William Mansky, Benjamin C. Pierce, and Steve Zdancewic. Verifying an HTTP key-value
server with interaction trees and VST. In Liron Cohen and Cezary Kaliszyk, editors, 12th
International Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021,
Rome, Italy (Virtual Conference), volume 193 of LIPIcs, pages 32:1–32:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITP.2021.32.

5

https://doi.org/10.1007/978-3-662-46669-8_7
http://arxiv.org/abs/1901.10541
http://arxiv.org/abs/1901.10541
https://www.fstar-lang.org/papers/indexedeffects/
https://doi.org/10.1145/3371119
https://doi.org/10.4230/LIPIcs.ITP.2021.32

