GhostTT.autosubst.unscoped
(* Adrian:
I changed this library a bit to work better with my generated code.
1. I use nat directly instead of defining fin to be nat and using Some/None as S/O
2. I removed the "s, sigma" notation for scons because it interacts with dependent function types "forall x, A"*)
From GhostTT.autosubst Require Import core.
Require Import Setoid Morphisms Relation_Definitions.
Definition ap {X Y} (f : X → Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl ⇒ eq_refl end.
Definition apc {X Y} {f g : X → Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl ⇒ match p with eq_refl ⇒ eq_refl end end.
Definition shift := S.
Definition var_zero := 0.
Definition id {X} := @Datatypes.id X.
Definition scons {X: Type} (x : X) (xi : nat → X) :=
fun n ⇒ match n with
| 0 ⇒ x
| S n ⇒ xi n
end.
#[ export ]
Hint Opaque scons : rewrite.
Class Ren1 (X1 : Type) (Y Z : Type) :=
ren1 : X1 → Y → Z.
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
ren2 : X1 → X2 → Y → Z.
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
ren3 : X1 → X2 → X3 → Y → Z.
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
ren4 : X1 → X2 → X3 → X4 → Y → Z.
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
ren5 : X1 → X2 → X3 → X4 → X5 → Y → Z.
Module RenNotations.
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
End RenNotations.
Class Subst1 (X1 : Type) (Y Z: Type) :=
subst1 : X1 → Y → Z.
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
subst2 : X1 → X2 → Y → Z.
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
subst3 : X1 → X2 → X3 → Y → Z.
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
subst4 : X1 → X2 → X3 → X4 → Y → Z.
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
subst5 : X1 → X2 → X3 → X4 → X5 → Y → Z.
Module SubstNotations.
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
End SubstNotations.
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
Module CombineNotations.
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
#[ global ]
Open Scope fscope.
#[ global ]
Open Scope subst_scope.
End CombineNotations.
Import CombineNotations.
A generic lifting of a renaming.
A generic proof that lifting of renamings composes.
Lemma up_ren_ren (xi: nat → nat) (zeta : nat → nat) (rho: nat → nat) (E: ∀ x, (xi >> zeta) x = rho x) :
∀ x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [|x].
- reflexivity.
- unfold up_ren. cbn. unfold funcomp. f_equal. apply E.
Qed.
∀ x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [|x].
- reflexivity.
- unfold up_ren. cbn. unfold funcomp. f_equal. apply E.
Qed.
Eta laws.
Lemma scons_eta' {T} (f : nat → T) :
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_eta_id' :
pointwise_relation _ eq (var_zero .: shift) id.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_comp' (T: Type) {U} (s: T) (sigma: nat → T) (tau: T → U) :
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
Proof. intros x. destruct x; reflexivity. Qed.
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
#[export] Instance scons_morphism {X: Type} :
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X).
Proof.
intros ? t → sigma tau H.
intros [|x].
cbn. reflexivity.
apply H.
Qed.
#[export] Instance scons_morphism2 {X: Type} :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X).
Proof.
intros ? t → sigma tau H ? x →.
destruct x as [|x].
cbn. reflexivity.
apply H.
Qed.
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_eta_id' :
pointwise_relation _ eq (var_zero .: shift) id.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_comp' (T: Type) {U} (s: T) (sigma: nat → T) (tau: T → U) :
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
Proof. intros x. destruct x; reflexivity. Qed.
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
#[export] Instance scons_morphism {X: Type} :
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X).
Proof.
intros ? t → sigma tau H.
intros [|x].
cbn. reflexivity.
apply H.
Qed.
#[export] Instance scons_morphism2 {X: Type} :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X).
Proof.
intros ? t → sigma tau H ? x →.
destruct x as [|x].
cbn. reflexivity.
apply H.
Qed.
Module UnscopedNotations.
Include RenNotations.
Include SubstNotations.
Include CombineNotations.
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
Notation "↑" := (shift) : subst_scope.
#[global]
Open Scope fscope.
#[global]
Open Scope subst_scope.
End UnscopedNotations.
Include RenNotations.
Include SubstNotations.
Include CombineNotations.
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
Notation "↑" := (shift) : subst_scope.
#[global]
Open Scope fscope.
#[global]
Open Scope subst_scope.
End UnscopedNotations.
Tactics for unscoped syntax
Tactic Notation "auto_case" tactic(t) := (match goal with
| [|- ∀ (i : nat), _] ⇒ intros []; t
end).
| [|- ∀ (i : nat), _] ⇒ intros []; t
end).
Generic fsimpl tactic: simplifies the above primitives in a goal.
Ltac fsimpl :=
repeat match goal with
| [|- context[id >> ?f]] ⇒ change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] ⇒ change (f >> id) with f (* AsimplCompIdR *)
| [|- context [id ?s]] ⇒ change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] ⇒ change ((f >> g) >> h) with (f >> (g >> h))
| [|- context[(?v .: ?g) var_zero]] ⇒ change ((v .: g) var_zero) with v
| [|- context[(?v .: ?g) 0]] ⇒ change ((v .: g) 0) with v
| [|- context[(?v .: ?g) (S ?n)]] ⇒ change ((v .: g) (S n)) with (g n)
| [|- context[?f >> (?x .: ?g)]] ⇒ change (f >> (x .: g)) with g (* f should evaluate to shift *)
| [|- context[var_zero]] ⇒ change var_zero with 0
| [|- context[?x2 .: (funcomp ?f shift)]] ⇒ change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f)
| [|- context[?f var_zero .: ?g]] ⇒ change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); rewrite scons_eta'
| [|- _ = ?h (?f ?s)] ⇒ change (h (f s)) with ((f >> h) s)
| [|- ?h (?f ?s) = _] ⇒ change (h (f s)) with ((f >> h) s)
(* DONE had to put an underscore as the last argument to scons. This might be an argument against unfolding funcomp *)
| [|- context[funcomp _ (scons _ _)]] ⇒ setoid_rewrite scons_comp'; eta_reduce
| [|- context[scons var_zero shift]] ⇒ setoid_rewrite scons_eta_id'; eta_reduce
end.
repeat match goal with
| [|- context[id >> ?f]] ⇒ change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] ⇒ change (f >> id) with f (* AsimplCompIdR *)
| [|- context [id ?s]] ⇒ change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] ⇒ change ((f >> g) >> h) with (f >> (g >> h))
| [|- context[(?v .: ?g) var_zero]] ⇒ change ((v .: g) var_zero) with v
| [|- context[(?v .: ?g) 0]] ⇒ change ((v .: g) 0) with v
| [|- context[(?v .: ?g) (S ?n)]] ⇒ change ((v .: g) (S n)) with (g n)
| [|- context[?f >> (?x .: ?g)]] ⇒ change (f >> (x .: g)) with g (* f should evaluate to shift *)
| [|- context[var_zero]] ⇒ change var_zero with 0
| [|- context[?x2 .: (funcomp ?f shift)]] ⇒ change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f)
| [|- context[?f var_zero .: ?g]] ⇒ change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); rewrite scons_eta'
| [|- _ = ?h (?f ?s)] ⇒ change (h (f s)) with ((f >> h) s)
| [|- ?h (?f ?s) = _] ⇒ change (h (f s)) with ((f >> h) s)
(* DONE had to put an underscore as the last argument to scons. This might be an argument against unfolding funcomp *)
| [|- context[funcomp _ (scons _ _)]] ⇒ setoid_rewrite scons_comp'; eta_reduce
| [|- context[scons var_zero shift]] ⇒ setoid_rewrite scons_eta_id'; eta_reduce
end.