GhostTT.CCMetaTheory
Basic meta-theory of the target CC
From Coq Require Import Utf8 List.
From GhostTT.autosubst Require Import CCAST unscoped RAsimpl CCAST_rasimpl GAST_rasimpl.
From GhostTT Require Import Util BasicAST SubstNotations ContextDecl CScoping
CTyping.
From Coq Require Import Setoid Morphisms Relation_Definitions.
From Equations Require Import Equations.
Import ListNotations.
Import CombineNotations.
Set Default Goal Selector "!".
Substitution preserves modes
Definition crscoping (Γ : cscope) (ρ : nat → nat) (Δ : cscope) : Prop :=
∀ x m,
nth_error Δ x = Some (Some m) →
nth_error Γ (ρ x) = Some (Some m).
Inductive csscoping (Γ : cscope) (σ : nat → cterm) : cscope → Prop :=
| cscope_nil : csscoping Γ σ []
| cscope_cons :
∀ Δ om,
csscoping Γ (↑ >> σ) Δ →
whenSome (ccscoping Γ (σ 0)) om →
csscoping Γ σ (om :: Δ).
Lemma crscoping_S :
∀ Γ o,
crscoping (o :: Γ) S Γ.
Proof.
intros Γ o. intros x mx e.
cbn. assumption.
Qed.
Lemma crscoping_plus :
∀ Δ Γ n,
Γ = skipn n Δ →
crscoping Δ (plus n) Γ.
Proof.
intros Δ Γ n →. intros x mx e.
rewrite nth_error_skipn. assumption.
Qed.
Lemma crscoping_shift :
∀ Γ Δ ρ mx,
crscoping Γ ρ Δ →
crscoping (mx :: Γ) (0 .: ρ >> S) (mx :: Δ).
Proof.
intros ? ? ? mx h' y my e.
destruct y.
- simpl in ×. assumption.
- simpl in ×. apply h'. assumption.
Qed.
Lemma crscoping_shift_none :
∀ Γ Δ ρ d,
crscoping Γ ρ Δ →
crscoping (d :: Γ) (up_ren ρ) (None :: Δ).
Proof.
intros Γ Δ ρ d h. intros x mx e.
destruct x.
- cbn in ×. noconf e.
- cbn in ×. apply h. assumption.
Qed.
Lemma cscoping_ren :
∀ Γ Δ ρ t m,
crscoping Γ ρ Δ →
ccscoping Δ t m →
ccscoping Γ (ρ ⋅ t) m.
Proof.
intros Γ Δ ρ t m hρ ht.
pose proof crscoping_shift as lem.
induction ht in Γ, ρ, hρ, lem |- ×.
all: solve [ rasimpl ; econstructor ; eauto ].
Qed.
Lemma csscoping_weak :
∀ Γ Δ σ m,
csscoping Γ σ Δ →
csscoping (m :: Γ) (σ >> ren_cterm ↑) Δ.
Proof.
intros Γ Δ σ m h.
induction h.
- constructor.
- constructor.
+ assumption.
+ destruct om. 2: eauto.
cbn in ×. eapply cscoping_ren. 2: eassumption.
apply crscoping_S.
Qed.
Lemma cscoping_subst :
∀ Γ Δ σ t m,
csscoping Γ σ Δ →
ccscoping Δ t m →
ccscoping Γ (t <[ σ ]) m.
Proof.
intros Γ Δ σ t m hσ ht.
induction ht in Γ, σ, hσ |- ×.
all: try solve [ rasimpl ; econstructor ; eauto ].
- rename H into hx, Γ0 into Δ.
rasimpl. induction hσ in x, hx |- ×. 1: destruct x ; discriminate.
destruct x.
+ simpl in ×. inversion hx. subst. assumption.
+ apply IHhσ. simpl in hx. assumption.
- rasimpl. constructor.
+ eauto.
+ apply IHht2. constructor.
× rasimpl. apply csscoping_weak. assumption.
× rasimpl. constructor. reflexivity.
- rasimpl. constructor.
+ eauto.
+ apply IHht2. constructor.
× rasimpl. apply csscoping_weak. assumption.
× rasimpl. constructor. reflexivity.
Qed.
Lemma csscoping_shift :
∀ Γ Δ mx σ,
csscoping Γ σ Δ →
csscoping (mx :: Γ) (cvar 0 .: σ >> ren1 S) (mx :: Δ).
Proof.
intros Γ Δ mx σ h.
constructor.
- rasimpl. apply csscoping_weak. assumption.
- destruct mx. 2: constructor.
cbn. constructor. reflexivity.
Qed.
#[export] Instance crscoping_morphism :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> iff) crscoping.
Proof.
intros Γ ? <- ρ ρ' e Δ ? <-.
revert ρ ρ' e. wlog_iff. intros ρ ρ' e h.
intros n m en. rewrite <- e. apply h. assumption.
Qed.
Lemma autosubst_simpl_crscoping :
∀ Γ Δ r s,
RenSimplification r s →
crscoping Γ r Δ ↔ crscoping Γ s Δ.
Proof.
intros Γ Δ r s H.
apply crscoping_morphism. 1,3: auto.
apply H.
Qed.
#[export] Hint Rewrite → autosubst_simpl_crscoping : asimpl_outermost.
#[export] Instance csscoping_morphism :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> iff) csscoping.
Proof.
intros Γ ? <- σ σ' e Δ ? <-.
revert σ σ' e. wlog_iff. intros σ σ' e h.
induction h as [| ? ? ? ? ih ] in σ', e |- ×.
- constructor.
- constructor.
+ apply ih. intros n. apply e.
+ rewrite <- e. assumption.
Qed.
Lemma autosubst_simpl_csscoping :
∀ Γ Δ r s,
CSubstSimplification r s →
csscoping Γ r Δ ↔ csscoping Γ s Δ.
Proof.
intros Γ Δ r s H.
apply csscoping_morphism. 1,3: auto.
apply H.
Qed.
#[export] Hint Rewrite → autosubst_simpl_csscoping : asimpl_outermost.
Lemma csscoping_ids :
∀ Γ,
csscoping Γ ids Γ.
Proof.
intros Γ. induction Γ as [| m Γ ih].
- constructor.
- constructor.
+ eapply csscoping_weak with (m := m) in ih. rasimpl in ih. assumption.
+ destruct m. 2: constructor.
constructor. reflexivity.
Qed.
Lemma csscoping_one :
∀ Γ u mx,
ccscoping Γ u mx →
csscoping Γ u.. (Some mx :: Γ).
Proof.
intros Γ u mx h.
constructor.
- rasimpl. apply csscoping_ids.
- cbn. assumption.
Qed.
Renaming preserves typing
Definition crtyping (Γ : ccontext) (ρ : nat → nat) (Δ : ccontext) : Prop :=
∀ x m A,
nth_error Δ x = Some (Some (m, A)) →
∃ B,
nth_error Γ (ρ x) = Some (Some (m, B)) ∧
(plus (S x) >> ρ) ⋅ A = (plus (S (ρ x))) ⋅ B.
#[export] Instance crtyping_morphism :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> iff) crtyping.
Proof.
intros Γ ? <- ρ ρ' e Δ ? <-.
revert ρ ρ' e. wlog_iff. intros ρ ρ' e h.
intros n m A en. rewrite <- e.
eapply h in en as [B [en eB]].
eexists. split. 1: eassumption.
rewrite <- eB.
apply extRen_cterm. intro x. cbn. core.unfold_funcomp.
rewrite <- e. reflexivity.
Qed.
Lemma autosubst_simpl_crtyping :
∀ Γ Δ r s,
RenSimplification r s →
crtyping Γ r Δ ↔ crtyping Γ s Δ.
Proof.
intros Γ Δ r s H.
apply crtyping_morphism. 1,3: auto.
apply H.
Qed.
#[export] Hint Rewrite → autosubst_simpl_crtyping : asimpl_outermost.
Lemma crtyping_cscoping :
∀ Γ Δ ρ,
crtyping Γ ρ Δ →
crscoping (csc Γ) ρ (csc Δ).
Proof.
intros Γ Δ ρ h.
intros n m e. unfold csc in e. rewrite nth_error_map in e.
destruct (nth_error Δ n) as [[[] |]|] eqn:en. 2,3: discriminate.
simpl in e. noconf e.
eapply h in en. destruct en as [B [en eB]].
unfold csc. rewrite nth_error_map.
rewrite en. reflexivity.
Qed.
Lemma crtyping_shift :
∀ Γ Δ mx A ρ,
crtyping Γ ρ Δ →
crtyping (Some (mx, ρ ⋅ A) :: Γ) (0 .: ρ >> S) (Some (mx, A) :: Δ).
Proof.
intros Γ Δ mx A ρ hρ.
intros y my B hy.
destruct y.
- cbn in ×. noconf hy. eexists.
split. 1: reflexivity.
rasimpl. reflexivity.
- cbn in ×. eapply hρ in hy. destruct hy as [C [en eC]].
eexists. split. 1: eassumption.
rasimpl.
apply (f_equal (λ t, S ⋅ t)) in eC. rasimpl in eC.
assumption.
Qed.
Lemma crtyping_upren_none :
∀ Γ Δ d ρ,
crtyping Γ ρ Δ →
crtyping (d :: Γ) (up_ren ρ) (None :: Δ).
Proof.
intros Γ Δ d ρ hρ.
intros y my B hy.
destruct y.
- cbn in ×. noconf hy.
- cbn in ×. eapply hρ in hy. destruct hy as [C [en eC]].
eexists. split. 1: eassumption.
apply (f_equal (λ t, S ⋅ t)) in eC. rasimpl in eC.
etransitivity. 2: eapply eC.
reflexivity.
Qed.
Lemma crtyping_S :
∀ Γ m A,
crtyping (Some (m, A) :: Γ) S Γ.
Proof.
intros Γ m A. intros x mx B e.
simpl. rasimpl.
eexists. split. 1: eassumption.
rasimpl. reflexivity.
Qed.
Lemma crscoping_sscoping :
∀ Γ Δ ρ,
crscoping Γ ρ Δ →
csscoping Γ (ρ >> cvar) Δ.
Proof.
intros Γ Δ ρ h.
induction Δ as [| m Δ ih] in ρ, h |- ×.
- constructor.
- constructor.
+ apply ih. rasimpl.
intros x mx e.
apply h. cbn. assumption.
+ destruct m. 2: constructor.
constructor. apply h. reflexivity.
Qed.
Lemma cmeta_conv :
∀ Γ t A B,
Γ ⊢ᶜ t : A →
A = B →
Γ ⊢ᶜ t : B.
Proof.
intros Γ t A B h →. assumption.
Qed.
Lemma cmeta_conv_trans_l :
∀ Γ u v w,
u = v →
Γ ⊢ᶜ v ≡ w →
Γ ⊢ᶜ u ≡ w.
Proof.
intros Γ ??? <- h. assumption.
Qed.
Lemma cmeta_conv_trans_r :
∀ Γ u v w,
Γ ⊢ᶜ u ≡ v →
v = w →
Γ ⊢ᶜ u ≡ w.
Proof.
intros Γ u v ? h <-. assumption.
Qed.
Ltac cscoping_ren_finish :=
eapply cscoping_ren ; [| eassumption] ;
try apply crscoping_shift ;
apply crtyping_cscoping ; assumption.
Lemma cconv_ren :
∀ Γ Δ ρ u v,
crtyping Γ ρ Δ →
Δ ⊢ᶜ u ≡ v →
Γ ⊢ᶜ ρ ⋅ u ≡ ρ ⋅ v.
Proof.
intros Γ Δ ρ u v hρ h.
induction h in Γ, ρ, hρ |- ×.
all: try solve [ rasimpl ; econstructor ; eauto ; cscoping_ren_finish ].
- rasimpl. eapply cmeta_conv_trans_r. 1: econstructor.
rasimpl. reflexivity.
- rasimpl. constructor.
+ auto.
+ eapply IHh2. apply crtyping_shift. assumption.
- rasimpl. constructor.
+ auto.
+ eapply IHh2. apply crtyping_shift. assumption.
Qed.
Lemma ctyping_ren :
∀ Γ Δ ρ t A,
crtyping Γ ρ Δ →
Δ ⊢ᶜ t : A →
Γ ⊢ᶜ ρ ⋅ t : ρ ⋅ A.
Proof.
intros Γ Δ ρ t A hρ ht.
induction ht in Γ, ρ, hρ |- ×.
all: try solve [ rasimpl ; econstructor ; eauto ; cscoping_ren_finish ].
- rasimpl. eapply hρ in H as [B [? eB]].
rasimpl in eB. rewrite eB.
econstructor. eassumption.
- rasimpl. econstructor. 1: eauto.
eapply IHht2. eapply crtyping_shift. assumption.
- rasimpl. econstructor. 1: eauto.
eapply IHht2. eapply crtyping_shift. assumption.
- rasimpl. rasimpl in IHht1.
eapply cmeta_conv. 1: econstructor. all: eauto.
rasimpl. reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
eapply cmeta_conv. 1: econstructor. all: eauto.
rasimpl. eauto.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
eapply cmeta_conv. 1: econstructor. all: eauto.
instantiate (1 := i). instantiate (1 := m).
rasimpl. eauto.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5.
eapply cmeta_conv. 1: econstructor. all: eauto.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4.
eapply cmeta_conv. 1: econstructor. all: eauto.
rasimpl. eauto.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5. rasimpl in IHht6. rasimpl in IHht7.
rasimpl in IHht8.
eapply cmeta_conv. 1: econstructor. all: eauto.
+ eapply cmeta_conv. 1: eauto.
f_equal. f_equal. f_equal. f_equal. f_equal.
rasimpl. reflexivity.
+ eapply cmeta_conv. 1: eauto.
f_equal. rasimpl. reflexivity.
+ eapply cmeta_conv. 1: eauto.
f_equal. f_equal. rasimpl. reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5. rasimpl in IHht6.
eapply cmeta_conv. 1: econstructor. all: eauto.
eapply cmeta_conv. 1: eauto.
f_equal. f_equal. f_equal. all: f_equal. all: f_equal.
all: rasimpl. all: reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5.
eapply cmeta_conv. 1: econstructor. all: eauto.
eapply cmeta_conv. 1: eauto.
f_equal. f_equal. all: f_equal. all: f_equal. 2,3: f_equal.
all: rasimpl. all: reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5. rasimpl in IHht6. rasimpl in IHht7.
rasimpl in IHht8. rasimpl in IHht9. rasimpl in IHht10. rasimpl in IHht11.
rasimpl in IHht12.
eapply cmeta_conv. 1: econstructor. all: eauto.
+ eapply cmeta_conv. 1: eauto.
f_equal. f_equal. f_equal. all: f_equal. all: f_equal. 2,3: f_equal.
4: f_equal.
all: rasimpl. all: reflexivity.
+ eapply cmeta_conv. 1: eauto.
f_equal. f_equal. all: f_equal. all: f_equal. 2,3: f_equal.
all: rasimpl. all: reflexivity.
+ eapply cmeta_conv. 1: eauto.
unfold capps. cbn.
f_equal. rasimpl. reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5. rasimpl in IHht6. rasimpl in IHht7.
rasimpl in IHht8. rasimpl in IHht9. rasimpl in IHht10. rasimpl in IHht11.
rasimpl in IHht12.
eapply cmeta_conv. 1: econstructor. all: eauto.
+ eapply cmeta_conv. 1: eauto.
f_equal. f_equal. f_equal. all: f_equal. all: f_equal. all: f_equal.
4: f_equal.
all: rasimpl. all: reflexivity.
+ eapply cmeta_conv. 1: eauto.
f_equal. f_equal. f_equal. all: f_equal. all: f_equal. 2-3: f_equal.
all: rasimpl. all: reflexivity.
+ eapply cmeta_conv. 1: eauto.
f_equal. rasimpl. f_equal. f_equal. f_equal. f_equal. f_equal.
unfold capps. cbn. rasimpl. reflexivity.
+ cbn. unfold elength. f_equal. f_equal. f_equal. f_equal. all: f_equal.
all: f_equal. 2-3: f_equal. 3-4: f_equal. 3-5: f_equal. 3,5: f_equal.
4: f_equal.
all: rasimpl.
all: reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5. rasimpl in IHht6. rasimpl in IHht7.
rasimpl in IHht8. rasimpl in IHht9. rasimpl in IHht10.
eapply cmeta_conv. 1: econstructor. all: eauto.
+ eapply cmeta_conv. 1: eauto.
f_equal. f_equal. f_equal. all: f_equal. all: f_equal. 2: f_equal.
all: rasimpl. all: reflexivity.
+ eapply cmeta_conv. 1: eauto.
clear. cbn. rasimpl. reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2.
econstructor. all: eauto.
eapply cconv_ren. all: eassumption.
Qed.
Substitution preserves typing
Inductive cstyping (Γ : ccontext) (σ : nat → cterm) : ccontext → Prop :=
| ctype_nil : cstyping Γ σ []
| ctype_cons :
∀ Δ d,
cstyping Γ (↑ >> σ) Δ →
whenSome (λ '(m, A),
ccscoping (csc Γ) (σ 0) m ∧
Γ ⊢ᶜ σ 0 : A <[ S >> σ ]
) d →
cstyping Γ σ (d :: Δ).
#[export] Instance styping_morphism :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> iff) cstyping.
Proof.
intros Γ ? <- σ σ' e Δ ? <-.
revert σ σ' e. wlog_iff. intros σ σ' e h.
induction h as [| ? ? ? ? ih ? ] in σ', e |- ×.
- constructor.
- constructor.
+ apply ih. intros n. apply e.
+ destruct d as [[]|]. 2: constructor.
cbn in ×. split.
× rewrite <- e. intuition assumption.
× rewrite <- e. eapply cmeta_conv. 1: intuition eassumption.
rasimpl. apply ext_cterm.
intro. apply e.
Qed.
Lemma autosubst_simpl_cstyping :
∀ Γ Δ r s,
CSubstSimplification r s →
cstyping Γ r Δ ↔ cstyping Γ s Δ.
Proof.
intros Γ Δ r s H.
apply styping_morphism. 1,3: auto.
apply H.
Qed.
#[export] Hint Rewrite → autosubst_simpl_cstyping : asimpl_outermost.
Lemma cstyping_cscoping :
∀ Γ Δ σ,
cstyping Γ σ Δ →
csscoping (csc Γ) σ (csc Δ).
Proof.
intros Γ Δ σ h. induction h.
- constructor.
- cbn. constructor. 1: assumption.
destruct d as [[]|]. 2: constructor.
cbn in ×. intuition assumption.
Qed.
Lemma cstyping_weak :
∀ Γ Δ σ mx A,
cstyping Γ σ Δ →
cstyping (Some (mx, A) :: Γ) (σ >> ren_cterm ↑) Δ.
Proof.
intros Γ Δ σ mx A h.
induction h.
- constructor.
- constructor.
+ assumption.
+ destruct d as [[]|]. 2: constructor.
cbn in ×. split.
× eapply cscoping_ren. 2: intuition eassumption.
apply crscoping_S.
× rasimpl. eapply cmeta_conv.
-- eapply ctyping_ren. 2: intuition eassumption.
intros n ? ? e. rasimpl. cbn.
eexists. split. 1: eassumption.
reflexivity.
-- rasimpl. reflexivity.
Qed.
Lemma cstyping_weak_none :
∀ Γ Δ σ,
cstyping Γ σ Δ →
cstyping (None :: Γ) (σ >> ren_cterm ↑) Δ.
Proof.
intros Γ Δ σ h.
induction h.
- constructor.
- constructor.
+ assumption.
+ destruct d as [[]|]. 2: constructor.
cbn in ×. split.
× eapply cscoping_ren. 2: intuition eassumption.
apply crscoping_S.
× rasimpl. eapply cmeta_conv.
-- eapply ctyping_ren. 2: intuition eassumption.
intros n ? ? e. rasimpl. cbn.
eexists. split. 1: eassumption.
reflexivity.
-- rasimpl. reflexivity.
Qed.
Lemma cstyping_shift :
∀ Γ Δ mx A σ,
cstyping Γ σ Δ →
cstyping (Some (mx, A <[ σ ]) :: Γ) (cvar 0 .: σ >> ren1 S) (Some (mx, A) :: Δ).
Proof.
intros Γ Δ mx A σ h.
constructor.
- rasimpl. apply cstyping_weak. assumption.
- rasimpl. cbn. split.
+ constructor. reflexivity.
+ eapply cmeta_conv.
× econstructor. cbn. reflexivity.
× rasimpl. reflexivity.
Qed.
Lemma cstyping_shift_none :
∀ Γ Δ σ,
cstyping Γ σ Δ →
cstyping (None :: Γ) (cvar 0 .: σ >> ren1 S) (None :: Δ).
Proof.
intros Γ Δ σ h.
constructor.
- rasimpl. apply cstyping_weak_none. assumption.
- rasimpl. cbn. constructor.
Qed.
Lemma cstyping_ids :
∀ Γ,
cstyping Γ ids Γ.
Proof.
intros Γ. induction Γ as [| [[m A]|] Γ ih].
- constructor.
- constructor. 2: split.
+ eapply cstyping_weak with (mx := m) (A := A) in ih.
rasimpl in ih. assumption.
+ constructor. reflexivity.
+ eapply cmeta_conv. 1: econstructor.
× cbn. reflexivity.
× rasimpl. substify. reflexivity.
- constructor. 2: constructor.
eapply cstyping_weak_none in ih. rasimpl in ih. assumption.
Qed.
Lemma cstyping_one :
∀ Γ mx A u,
ccscoping (csc Γ) u mx →
Γ ⊢ᶜ u : A →
cstyping Γ u.. (Some (mx, A) :: Γ).
Proof.
intros Γ mx A u h hm.
constructor. all: rasimpl.
- apply cstyping_ids.
- cbn. intuition auto. rasimpl. assumption.
Qed.
Ltac cscoping_subst_finish :=
eapply cscoping_subst ; [| eassumption] ;
try apply csscoping_shift ;
apply cstyping_cscoping ; assumption.
Lemma cconv_subst :
∀ Γ Δ σ u v,
cstyping Γ σ Δ →
Δ ⊢ᶜ u ≡ v →
Γ ⊢ᶜ u <[ σ ] ≡ v <[ σ ].
Proof.
intros Γ Δ σ u v hσ h.
induction h in Γ, σ, hσ |- ×.
all: try solve [ rasimpl ; econstructor ; eauto ; cscoping_subst_finish ].
- rasimpl. eapply cmeta_conv_trans_r. 1: econstructor.
rasimpl. apply ext_cterm.
intros [].
+ rasimpl. reflexivity.
+ rasimpl. reflexivity.
- rasimpl. constructor.
+ auto.
+ eapply IHh2. apply cstyping_shift. assumption.
- rasimpl. constructor.
+ auto.
+ eapply IHh2. apply cstyping_shift. assumption.
Qed.
Lemma ctyping_subst :
∀ Γ Δ σ t A,
cstyping Γ σ Δ →
Δ ⊢ᶜ t : A →
Γ ⊢ᶜ t <[ σ ] : A <[ σ ].
Proof.
intros Γ Δ σ t A hσ ht.
induction ht in Γ, σ, hσ |- ×.
all: try solve [ rasimpl ; econstructor ; eauto ; cscoping_subst_finish ].
- rasimpl.
induction hσ in x, H |- ×. 1: destruct x ; discriminate.
destruct x.
+ cbn in H. noconf H. cbn in ×. intuition assumption.
+ apply IHhσ. assumption.
- rasimpl. econstructor. 1: eauto.
eapply IHht2. eapply cstyping_shift. assumption.
- rasimpl. econstructor. 1: eauto.
eapply IHht2. eapply cstyping_shift. assumption.
- rasimpl. rasimpl in IHht1.
eapply cmeta_conv. 1: econstructor. all: eauto.
rasimpl. apply ext_cterm. intros [].
+ rasimpl. reflexivity.
+ rasimpl. reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
eapply cmeta_conv. 1: econstructor. all: eauto.
rasimpl. eapply cmeta_conv. 1: eauto.
rasimpl. reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
eapply cmeta_conv. 1: econstructor. all: eauto.
instantiate (1 := i). instantiate (1 := m).
rasimpl. eapply cmeta_conv. 1: eauto.
rasimpl. reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5.
eapply cmeta_conv. 1: econstructor. all: eauto.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4.
eapply cmeta_conv. 1: econstructor. all: eauto.
rasimpl. eapply cmeta_conv. 1: eauto.
rasimpl. reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5. rasimpl in IHht6. rasimpl in IHht7.
rasimpl in IHht8.
eapply cmeta_conv. 1: econstructor. all: eauto.
+ eapply cmeta_conv. 1: eauto.
f_equal. f_equal. f_equal. f_equal. f_equal.
rasimpl. reflexivity.
+ eapply cmeta_conv. 1: eauto.
clear. f_equal. rasimpl. f_equal. all: f_equal. all: f_equal.
all: rasimpl. all: reflexivity.
+ eapply cmeta_conv. 1: eauto.
clear. f_equal. f_equal. f_equal. all: f_equal. all: f_equal.
2-4: f_equal. 2-4: f_equal.
all: rasimpl. all: reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5. rasimpl in IHht6.
eapply cmeta_conv. 1: econstructor. all: eauto.
eapply cmeta_conv. 1: eauto.
clear. f_equal. f_equal.
rasimpl. f_equal. all: f_equal. all: f_equal.
all: rasimpl. all: reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5.
eapply cmeta_conv. 1: econstructor. all: eauto.
eapply cmeta_conv. 1: eauto.
f_equal. rasimpl. reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5. rasimpl in IHht6. rasimpl in IHht7.
rasimpl in IHht8. rasimpl in IHht9. rasimpl in IHht10. rasimpl in IHht11.
rasimpl in IHht12.
eapply cmeta_conv. 1: econstructor. all: eauto.
+ eapply cmeta_conv. 1: eauto.
clear. f_equal. f_equal. f_equal. all: f_equal. all: f_equal.
2-3: f_equal. 4: f_equal.
all: rasimpl. all: reflexivity.
+ eapply cmeta_conv. 1: eauto.
clear. f_equal. f_equal. all: f_equal. all: f_equal.
2-3: f_equal.
all: rasimpl. all: reflexivity.
+ eapply cmeta_conv. 1: eauto.
clear. unfold capps. cbn. rasimpl. reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5. rasimpl in IHht6. rasimpl in IHht7.
rasimpl in IHht8. rasimpl in IHht9. rasimpl in IHht10. rasimpl in IHht11.
rasimpl in IHht12.
eapply cmeta_conv. 1: econstructor. all: eauto.
+ eapply cmeta_conv. 1: eauto.
clear. f_equal. f_equal. f_equal. all: f_equal. all: f_equal.
2-3: f_equal. 4: f_equal.
all: rasimpl. all: reflexivity.
+ eapply cmeta_conv. 1: eauto.
clear. f_equal. f_equal. f_equal. all: f_equal. all: f_equal.
2-3: f_equal.
all: rasimpl. all: reflexivity.
+ eapply cmeta_conv. 1: eauto.
clear. f_equal. unfold capps. cbn. f_equal. all: f_equal.
2: f_equal. 2: f_equal. 2-3: f_equal. 2-4: f_equal. 3-5: f_equal.
5-7: f_equal. 6-8: f_equal. 6-8: f_equal. 6-8: f_equal. 6-8: f_equal.
all: rasimpl. all: reflexivity.
+ clear. cbn. unfold elength. rasimpl. reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2. rasimpl in IHht3.
rasimpl in IHht4. rasimpl in IHht5. rasimpl in IHht6. rasimpl in IHht7.
rasimpl in IHht8. rasimpl in IHht9. rasimpl in IHht10.
eapply cmeta_conv. 1: econstructor. all: eauto.
+ eapply cmeta_conv. 1: eauto.
clear. f_equal. f_equal. f_equal. all: f_equal. all: f_equal.
2: f_equal.
all: rasimpl. all: reflexivity.
+ eapply cmeta_conv. 1: eauto.
clear. unfold capps. cbn. rasimpl. reflexivity.
- rasimpl. rasimpl in IHht1. rasimpl in IHht2.
econstructor. all: eauto.
eapply cconv_subst. all: eassumption.
Qed.
Closing terms having None in the context
Definition close t :=
t <[ ctt .. ].
Lemma csscoping_one_none :
∀ Γ u,
csscoping Γ u.. (None :: Γ).
Proof.
intros Γ u.
constructor.
- rasimpl. apply csscoping_ids.
- cbn. auto.
Qed.
Lemma cstyping_one_none :
∀ Γ u,
cstyping Γ u.. (None :: Γ).
Proof.
intros Γ u.
constructor. all: rasimpl.
- apply cstyping_ids.
- cbn. auto.
Qed.
Lemma cscope_close :
∀ Γ m t,
ccscoping (None :: Γ) t m →
ccscoping Γ (close t) m.
Proof.
intros Γ m t h.
eapply cscoping_subst. 2: eassumption.
apply csscoping_one_none.
Qed.
Hint Resolve cscope_close : cc_scope.
Lemma ctype_close :
∀ Γ t A,
None :: Γ ⊢ᶜ t : A →
Γ ⊢ᶜ close t : close A.
Proof.
intros Γ t A h.
eapply ctyping_subst. 2: eassumption.
apply cstyping_one_none.
Qed.
Hint Resolve ctype_close : cc_type.
Lemma cconv_close :
∀ Γ u v,
None :: Γ ⊢ᶜ u ≡ v →
Γ ⊢ᶜ close u ≡ close v.
Proof.
intros Γ u v h.
unfold close. eapply cconv_subst.
- eapply cstyping_one_none.
- assumption.
Qed.
We can also lift from Γ, None to Γ, Some (m, A)
Definition nones := ctt .: cvar >> ren_cterm S.
Lemma csscoping_nones :
∀ Γ m,
csscoping (Some m :: Γ) nones (None :: Γ).
Proof.
intros Γ m. unfold nones. constructor.
- rasimpl. apply crscoping_sscoping. apply crscoping_S.
- cbn. constructor.
Qed.
Lemma ccmeta_conv :
∀ Γ t A B,
Γ ⊢ᶜ t : A →
A = B →
Γ ⊢ᶜ t : B.
Proof.
intros. subst. assumption.
Qed.
Lemma crtyping_typing :
∀ Γ Δ ρ,
crtyping Γ ρ Δ →
cstyping Γ (ρ >> cvar) Δ.
Proof.
intros Γ Δ ρ h.
induction Δ as [| o Δ ih] in ρ, h |- ×.
- constructor.
- constructor.
+ apply ih. rasimpl.
intros x mx A e.
apply h. cbn. assumption.
+ destruct o as [[]|]. 2: constructor.
cbn. split.
× constructor. eapply crtyping_cscoping in h. eapply h. reflexivity.
× specialize (h 0). specialize h with (1 := eq_refl).
destruct h as [B [e eB]].
eapply ccmeta_conv.
-- econstructor. eassumption.
-- cbn. rasimpl. rasimpl in eB.
erewrite extRen_cterm.
++ erewrite <- eB. substify. rasimpl. reflexivity.
++ intro. reflexivity.
Qed.
Lemma cstyping_nones :
∀ Γ m A,
cstyping (Some (m, A) :: Γ) nones (None :: Γ).
Proof.
intros Γ m A. unfold nones. constructor.
- rasimpl. eapply crtyping_typing. apply crtyping_S.
- cbn. auto.
Qed.
Definition ignore t := t <[ nones ].
Lemma cscope_ignore :
∀ Γ mx m t,
ccscoping (None :: Γ) t m →
ccscoping (Some mx :: Γ) (ignore t) m.
Proof.
intros Γ mx m t h.
eapply cscoping_subst. 2: eassumption.
apply csscoping_nones.
Qed.
Hint Resolve cscope_ignore : cc_scope.
Lemma ctype_ignore :
∀ Γ mx B t A,
None :: Γ ⊢ᶜ t : A →
Some (mx, B) :: Γ ⊢ᶜ ignore t : ignore A.
Proof.
intros Γ mx B t A h.
eapply ctyping_subst. 2: eassumption.
apply cstyping_nones.
Qed.
Hint Resolve ctype_ignore : cc_type.
Opaque close ignore.
Reproving ext_cterm but with scoping assumption
Definition inscope (Γ : cscope) x :=
match nth_error Γ x with
| Some (Some m) ⇒ true
| _ ⇒ false
end.
Definition eq_subst_on (Γ : cscope) (σ θ : nat → cterm) :=
∀ x, inscope Γ x = true → σ x = θ x.
Lemma eq_subst_on_up :
∀ Γ m σ θ,
eq_subst_on Γ σ θ →
eq_subst_on (Some m :: Γ) (up_cterm_cterm σ) (up_cterm_cterm θ).
Proof.
intros Γ m σ θ h [] he.
- reflexivity.
- cbn. repeat core.unfold_funcomp. f_equal.
apply h. apply he.
Qed.
Lemma ext_cterm_scoped :
∀ Γ t m σ θ,
ccscoping Γ t m →
eq_subst_on Γ σ θ →
t <[ σ ] = t <[ θ ].
Proof.
intros Γ t m σ θ ht e.
induction ht in σ, θ, e |- ×.
all: try solve [ cbn ; eauto ].
all: try solve [ cbn ; f_equal ; eauto ].
- cbn. apply e. unfold inscope. rewrite H. reflexivity.
- cbn.
erewrite IHht1. 2: eauto.
erewrite IHht2. 2: eauto using eq_subst_on_up.
reflexivity.
- cbn.
erewrite IHht1. 2: eauto.
erewrite IHht2. 2: eauto using eq_subst_on_up.
reflexivity.
Qed.